хранение и представление информации в ГИС

Представление пространственных данных в ГИС

Пространственные атрибуты

• **Атрибут**, реквизит (attribute) — свойство, качественный или количественный признак, характеризующий пространственный объект (но не связанный с его местоуказанием) и ассоциированный с его уникальным номером (идентификатором). Множество атрибутов пространственного объекта образует атрибутивные данные (Геоинформатика, 2008).

Шкалы измерений атрибутивных данных

- Номинальная шкала (объекты различаются по именам)
- Различны по природе, нельзя сравнивать

Сосна и дуб

• Порядковая шкала

• Качественное сравнение (лучше-хуже, большеменьше и т.д.)

Сравнение по высоте, по прочности древесины

• Интервальная шкала

• Сравнение на основании измеряемых характеристик

Сравнение по высоте (м)

Типы пространственных атрибутов в ГИС:

Шкалы измерений данных

Типы атрибутов

• Номинальная шкала

• Категории

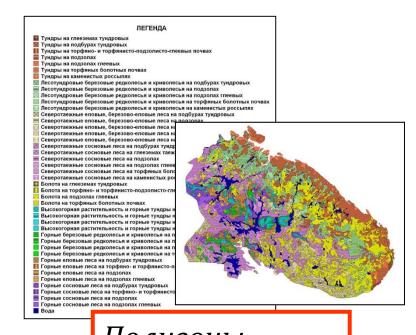
• Порядковая шкала

• Ранги

• Интервальная шкала

• Количество

• Величина

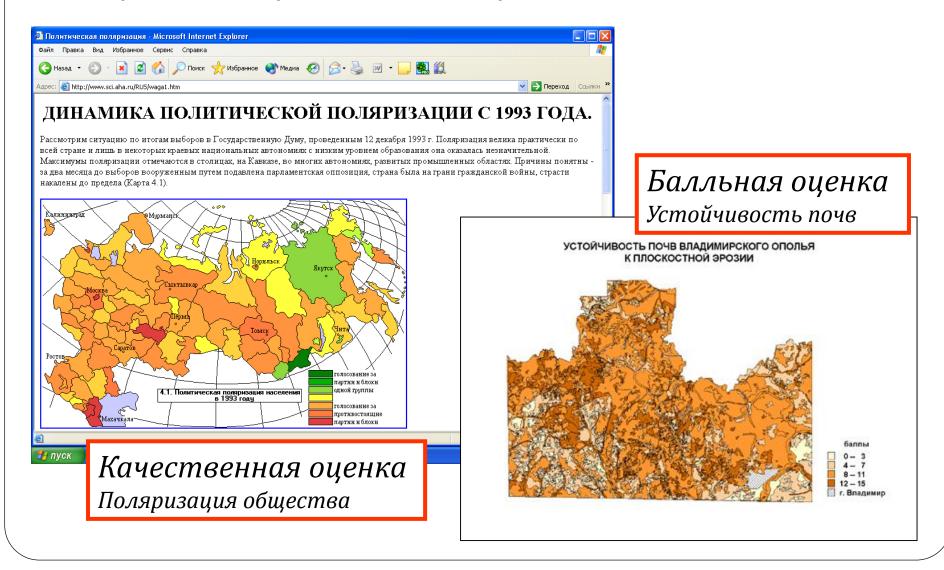

• Отношение

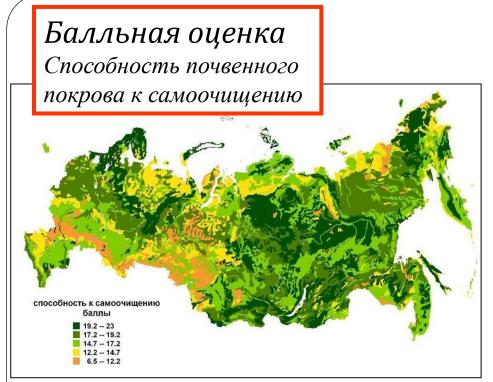
Номинальная шкала

Категории – группы подобных объектов

Точки Почвенные разрезы Линии Дороги 🚄 Легенда Goroda ,Rely... 📮 🗖 🌓 железные дороги автомобильные дороги

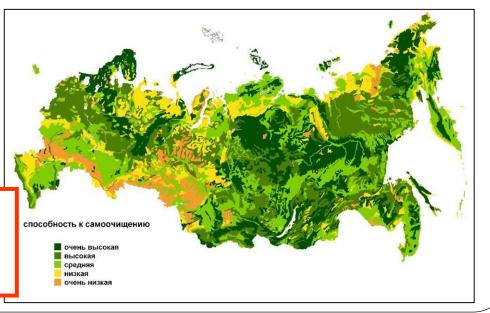
В категории входят объекты одного класса, имеющие характерные отличия от объектов другого класса.




Полигоны Экосистемы (почвырастительность)

Порядковая шкала

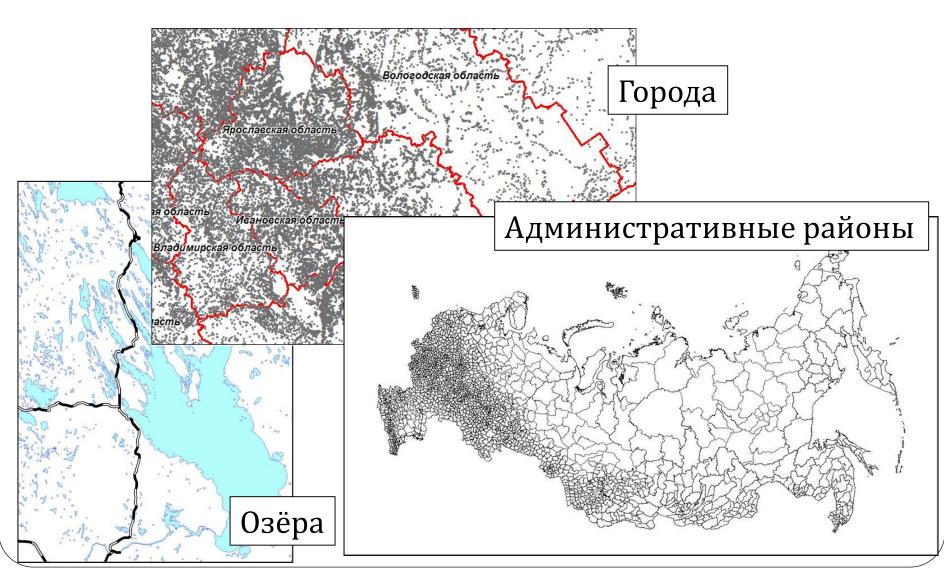
группы объектов, систематизированные в порядке возрастания или убывания величины



Ранги (баллы) используются, •когда трудно дать непосредственную оценку величины, характеризующей объект,

•оценка определяется целой комбинацией факторов.

Полуколичественная, квалиметрическая оценка – «оценка качества количеством»


> Качественная оценка Способность почвенного покрова к самоочищению

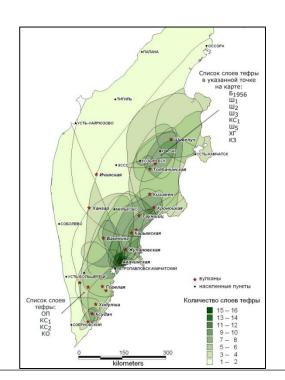
Количество –

Интервальная шкала

значение, отражающее фактическое число объектов определённого вида на карте

Величина –

Интервальная шкала


числовое значение, связанное с каждым объектом определённого вида на карте

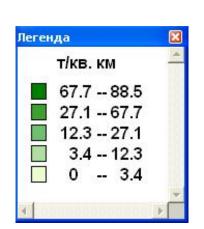
Количественные показатели – абсолютная оценка. Разбиение на диапазоны

(классы)

Отношение –

Интервальная шкала

удельное (относящееся к единице измерения) значение величины, связанное с каждым объектом определённого вида на карте


Определяется для каждого объекта путём деления одной величины на другую.

Отражает взаимосвязь между двумя величинами, характеризующими объект.

Существенное значение имеет *правильное определение территории*, для которой рассчитываются относительные показатели объектов.

Различное изображение атрибутов в интервальной шкале

Субъекты РФ в федеральных округах

хранение и представление информации в ГИС

Структуры компьютерных файлов и модели баз данных

Чего мы хотим от ГИС?

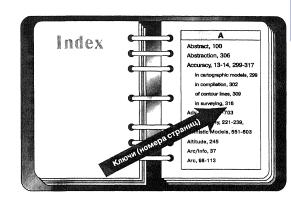
• В ГИС каждый графический объект (его расположение в пространстве и описательные характеристики – атрибуты) должны храниться таким образом, чтобы была возможность работать с данными:

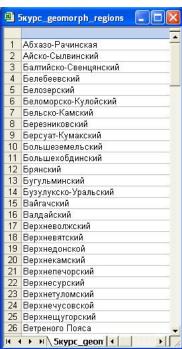
<u>отображать, анализировать, обрабатывать и</u> <u>т.д. любую нужную информацию за приемлемое</u> <u>время</u>.

Операции над данными

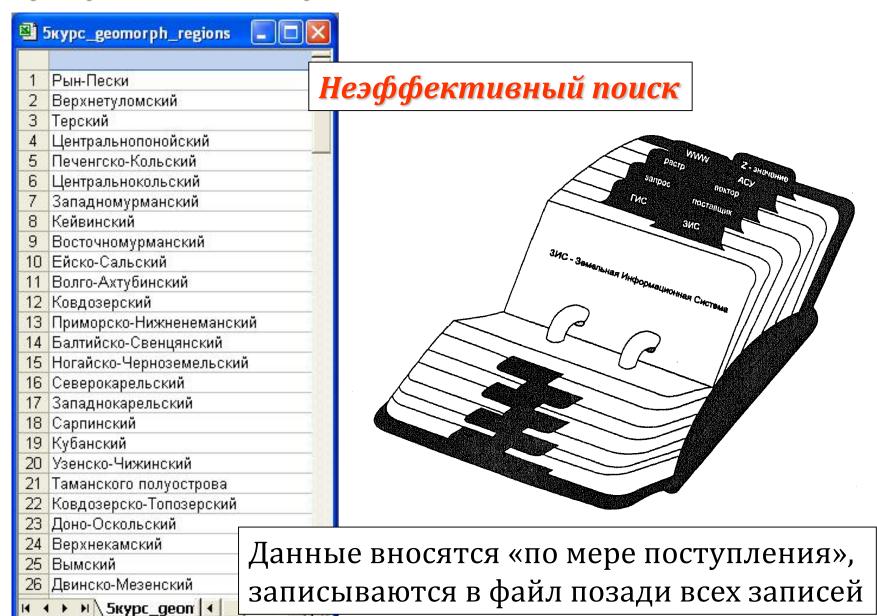
- Идентификация данных и их поиск в БД
- Выборка (чтение) данных из БД
- Добавление (запись) данных в БД
- Удаление данных из БД
- Изменение данных в БД

Информация в компьютере хранится в компьютерных файлах (состоят из записей)
Следующий уровень организации информации — базы данных (состоят из файлов)

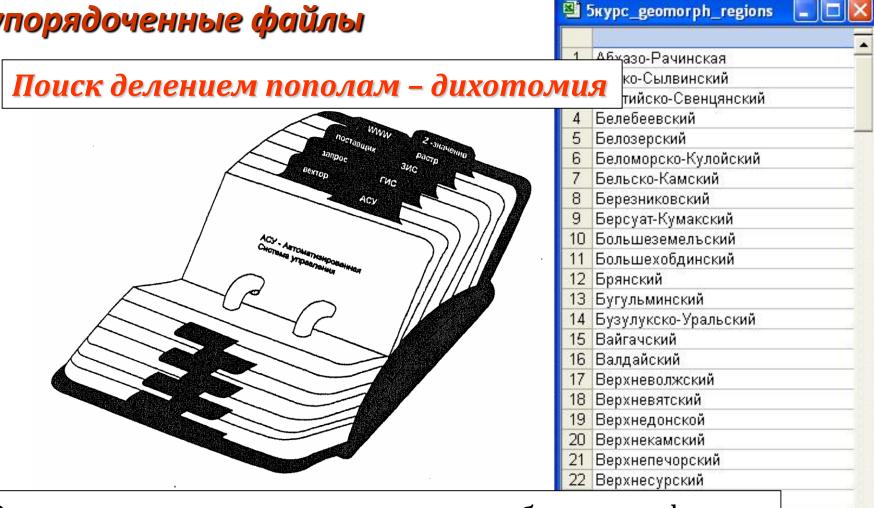



• Неупорядоченные файлы

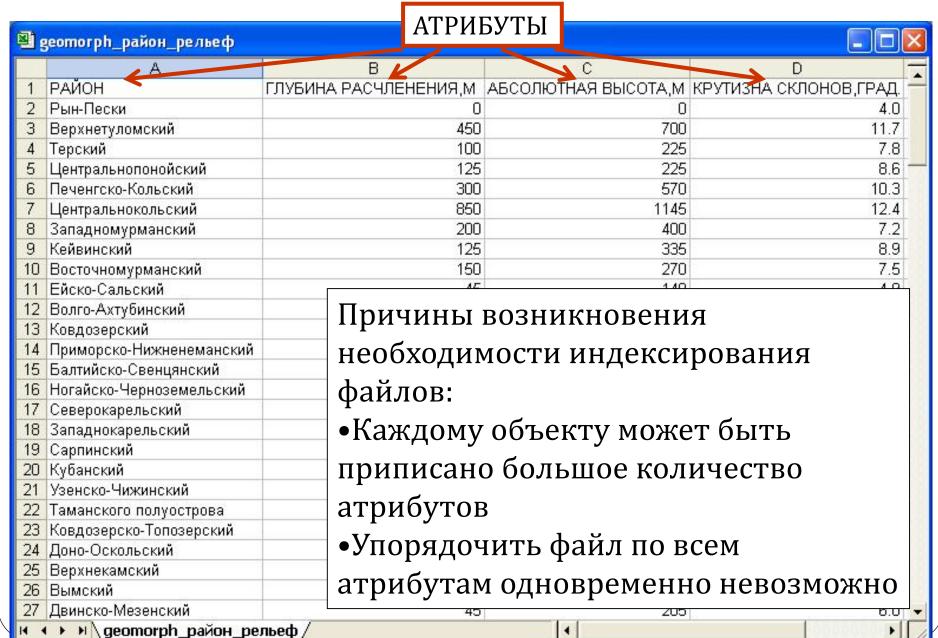
• Последовательно упорядоченные файлы


1 Рын-Пески Верхнетуломский 3 Терский Центральнопонойский Печенгско-Кольский Центральнокольский Западномурманский 8 Кейвинский 9 Восточномурманский 10 Ейско-Сальский 11 Волго-Ахтубинский 12 Ковдозерский 13 Приморско-Нижненеманский 14 Балтийско-Свенцянский 15 Ногайско-Черноземельский 16 Северокарельский 17 Западнокарельский 18 Сарпинский 19 Кубанский 20 Узенско-Чижинский 21 Таманского полуострова 22 Ковдозерско-Топозерский 23 Доно-Оскольский 24 Верхнекамский 25 Вымский 26 Двинско-Мезенский

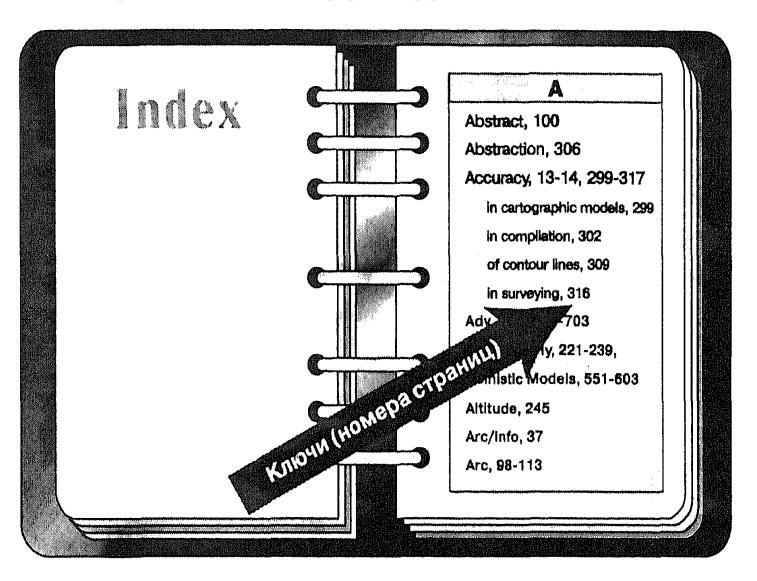
• Индексированные файлы



Неупорядоченные файлы



Последовательно упорядоченные файлы


- •Записи упорядочены по числам или буквам алфавита
- •Каждая новая запись должна вставляться в определенное место последовательности

Индексированные файлы

- Для поиска (сортировки) записей по нескольким атрибутам создается **внешний индекс**.
- Внешний индекс новый файл (индексный файл) в который скопированы значения одного атрибута всех записей вместе с положениями этих записей (ссылками). Записи в новом файле упорядочены по атрибуту можно осуществлять поиск делением пополам.
- Во внешний индекс можно выносить несколько атрибутов и организовывать поиск по этим атрибутам.
- Исходный файл становится индексированным.
- При добавлении записей в исходный файл ссылки на них должны помещаться в соответствующее место индексного файла.

Индексированная структура данных

	Район_тип_рельефа		абс_высота_м		
	Рын-Пески (Верхнехвалынская песчан:		0	1	
	Волгоградское Заволжье (Морская ниж		25		
Skync geomorph regions	Узенско-Чижинский (Нижнехвалынская		25	фа	склоны
Район_тип_рельефа	глубина_расчл_ср	кая нижнехвалынска	50		
Рын-		_			
нижн Поиск делени	ем попол	ам – дихог	томия	нилище	
Манычский (Долина Маныча с компл	15	иельский (Верхнечет	50	(Холмисто-моренная і	
Волховский (Террасированная озерн	22.5	зерно-ледниковая ра	65	кой аллювиально-прол	0.004138
Двинско-Мезенский (Морская, озерн	25	асированная озерно-	65	трова	2.819
Северодвинский (Озерно-ледникова	25	(Озерно-ледниковая	T. 1953-000	ово-грядовая возвыш	3.392
Приневско-Эстонский (Предглинтов	25	(Холмисто-морення	75	ий (Межлопастные мок	3.513
Псковско-Чудский (Озерно-ледников	25	й (Морская, озерно-л	95	й (Равнинный, прядовь	
Кубанский (Наклонная террасирован	25	Озерно-ледниковая и	95	хвалынская песчаная	
Верхневолжский (Озерно-ледникова	27.5	Озерно-ледниковая є	100	(Относительно сниже	4.004
Приильменский (Озерно-ледниковая	27.5	няя дельтовая равн	100	ельский (Верхнечетвє	4.055
Полоцкий (Озерно-ледниковая и зан)	27.5	огорный, мелкосопоч	100	ый склон Донской гряд	4.070
Верхнепечорский (Ледниковая, озер	30	жский (Аллювиальня	110	ій (Моренное плато на	4,073
Горьковско-Заволжский (Аллювиалі	30	Озерно-ледниковая,	115	(Аллювиально-дельт	4.13
Онежско-Двинский (Холмисто-море	30	лжье (Сыртовая рав	115	ллювиально-морская	4.168
Мещерский (Террасированная озерн	30	кий (Сельговая равн	115	рядово-холмистая, ле	4.195
Онежско-Сухонский (Ложбина с тер;		ная террасировання	120	ский (Слабо расчленен	4.256
Прибеломорский (Озерно-ледникова	30	ий (Ложбина с террас	125	Сальско-Манычская п	4.263
Окско-Воронежский (Плосковолнист	35	брежно-морская терј	125	тенсивно расчлененн	4.299
Приморско-Нижненеманский (Озерн	35	Грядово-холмистая,	130	жий (Моренно-эрозион	4.3
Унженский (Моренная и террасиров:	40	сированная озерно-с	135	(Меридионально ориє	4,325
Среднепечорский (Террасированная	40	нский (Слабо расчлен	135	тжье (Сыртовая равни	4,343
Волжско-Клязьминский (Слабо расч.	40			олжье (Морская нижне	4.381
Заветлужский (Плосковолнистая мс	40	Большеземельский (Холмисто-грядовая.			4.393
Северный Окраинный (Моренно-эро:	40	Рославльско-Спас-Деминский (Моренно-:			4.4

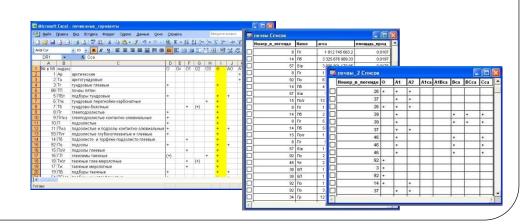
Основные типы моделей баз данных

- Иерархическая модель
 - Квадротомическая модель

площадка

— квадрат 1

— квадрат 2

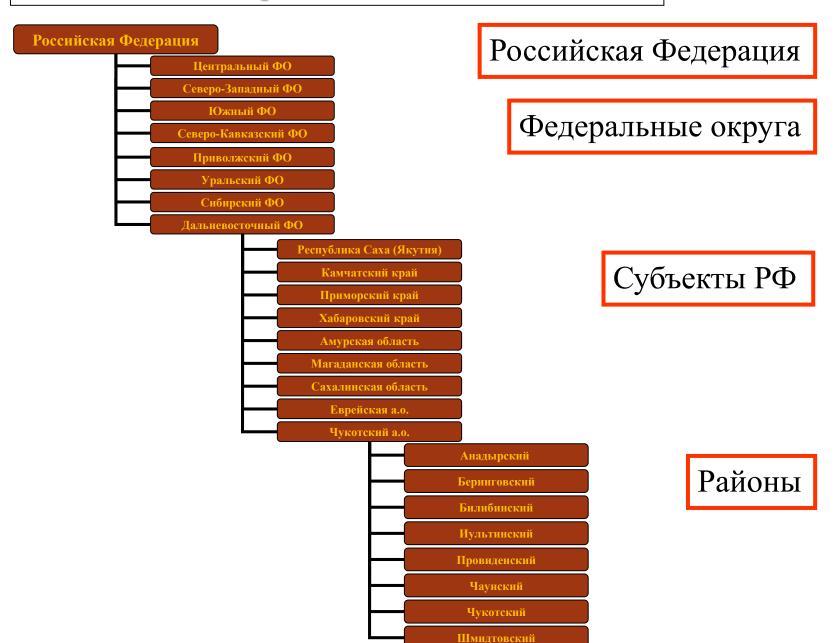

— вид 2

— вид 3

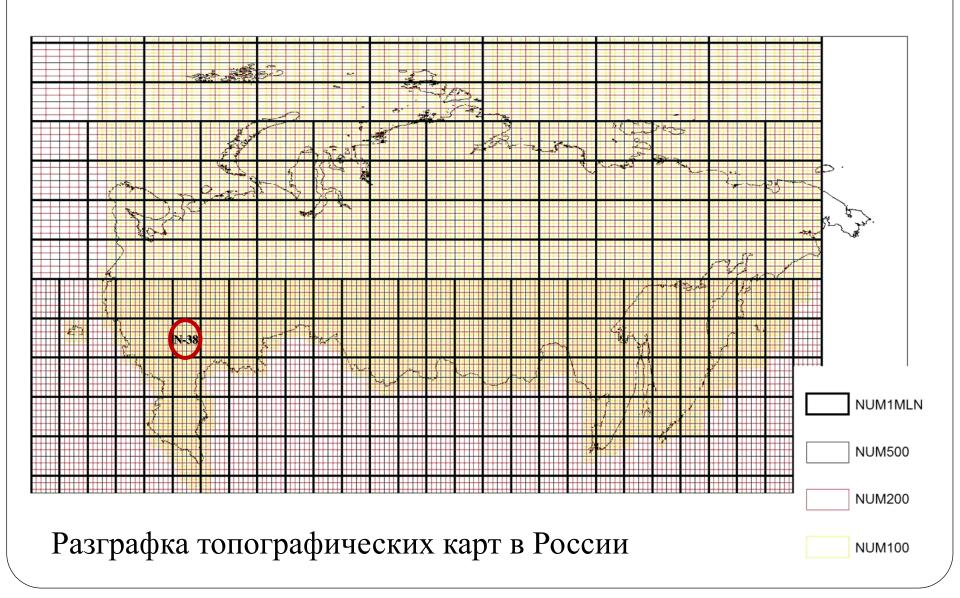
семейство

• Сетевая модель

• Реляционная модель

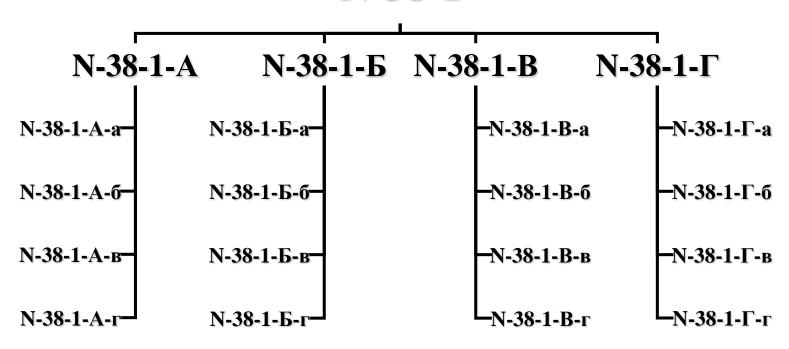

Иерархическая модель

Система классификации растений и животных



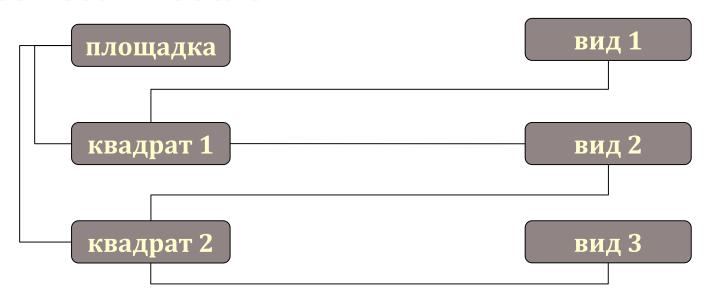
- Записи образуют древовидную структуру и связаны с одной записью, находящейся на более высоком уровне иерархии, т.е. связь один ко многим (1:N).
- Доступ к записям осуществляется путем прохода по строго определенной цепочке узлов дерева.

Схема административного деления России

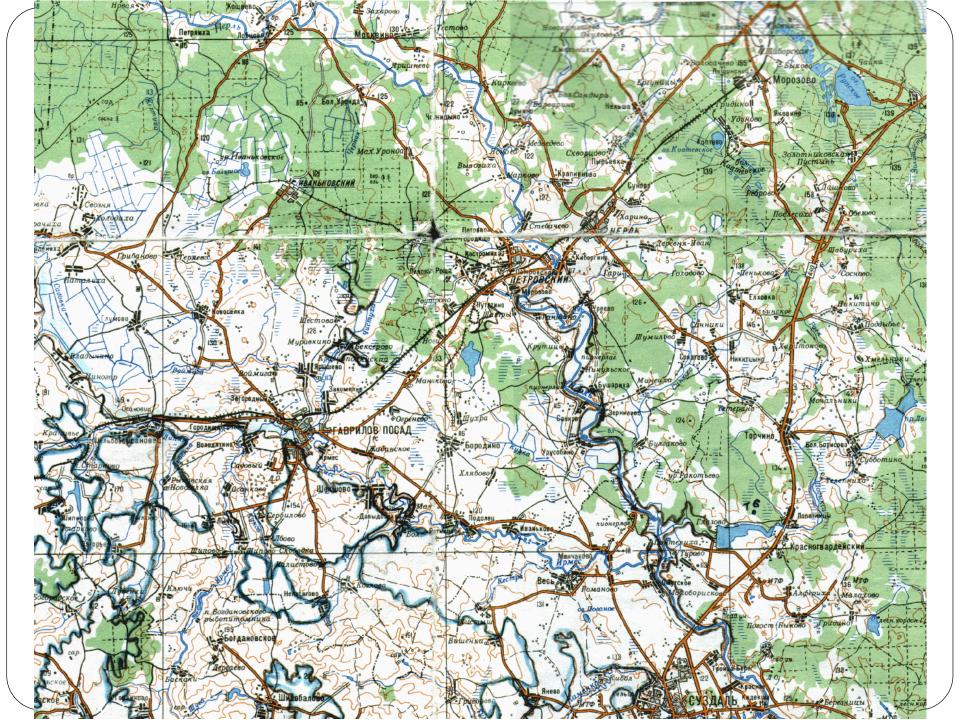

Квадротомическая модель — иерархическая модель со связью 1:4

†					
	N-38-1-A-a	N-38-1-A-б	N-38-1- Б- а	N-38-1- Б- б	
Номенклатурные	N-38-1-A		N-38-1-Б		
листы карты	N-38-1-A-в	N-38-1-А-г	N-38-1- Б- в	N-38-1- Б -г	
Масштабы:	N-38-1				
•N-38-1 -1:100 000 •N-38-1-A -1:50 000	N-38-1-B-a	N-38-1- B -б	N-38-1-Γ-a	N-38-1-Г-б	
•N-38-1-A-a $-1:25\ 000$	N-38-1-B		N-38-1-Γ		
	N-38-1 -В- в	N-38-1 -В- г	N-38-1-Г-в	N-38-1- Г -г	

Квадротомическое дерево



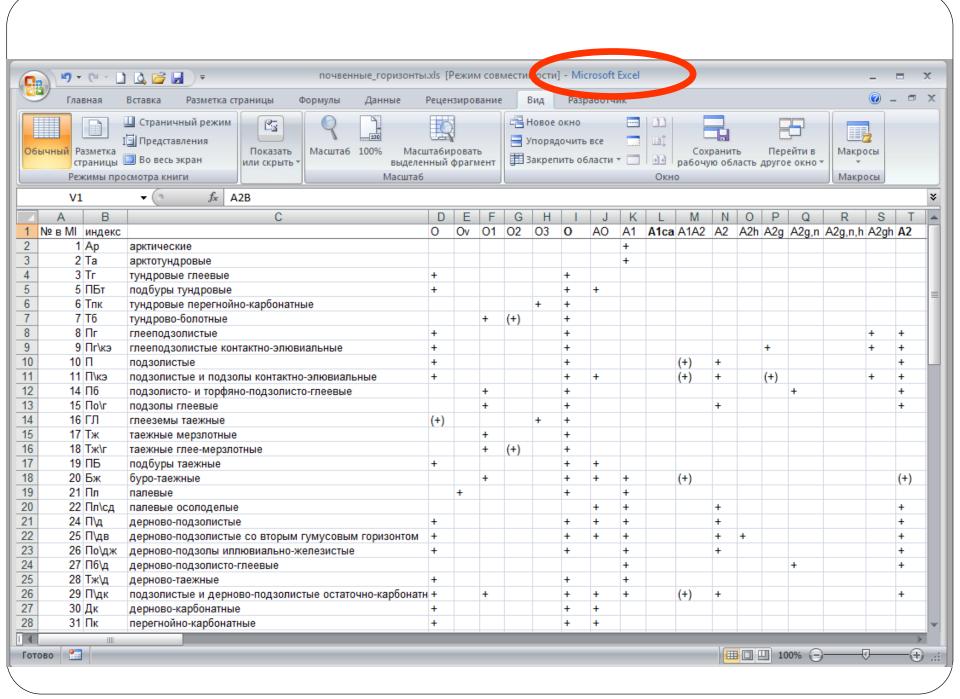
Иерархическая модель

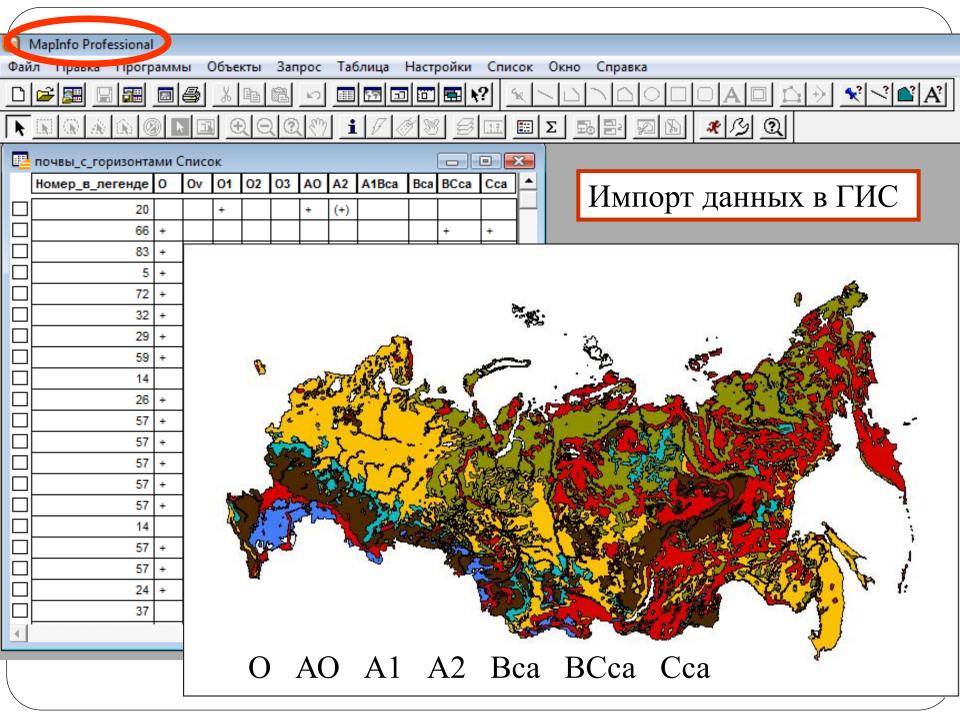

- Имеет жесткую структуру. Большие индексные файлы.
 - Непригодна для использования в сложных системах с оперативной обработкой запросов, не может обеспечить быстродействие.
 - Трудно модифицировать.
 - Не используется при большом количестве уровней.
- Эффективная организация машинной памяти.
 - Применяется для задач с иерархической структурой информации и запросов, составления различного рода классификаторов.

БД 1-го поколения

Сетевая модель

- Усовершенствованная иерархическая структура. Запись в каждом узле может быть связана с несколькими другими узлами.
- Записи содержат указатели, определяющие местоположение других записей, связанных с ними.
- Ускорение доступа к данным.


Сетевая модель


- Сложна для проектирования и поддержки.
 - Трудноизменяемая структура, редактирование записей требует также редактирования указателей.
- Эффективна при решении сетевых и коммуникационных задач.

Реляционная модель

- Англ.: relation (отношение; связь)
- Реляционная модель табличная модель данных, основным средством структуризации в которой является отношение (связь). Таблица отражает объекты реального мира и состоит из строк, или записей (1 строка сведения об 1 объекте) и столбцов, или полей (1 столбец 1 характеристика (атрибут) всех объектов).
- В одной базе данных может быть множество таблиц.
- Первичный ключ столбец, значения в котором однозначно идентифицируют каждую строку реляционной модели (каждый объект).
- Внешний ключ столбец в реляционной модели, поддерживающий связь между разными реляционными таблицами.

Основные преимущества реляционных СУБД в ГИС

- Возможность манипулирования данными без необходимости знания физической организации БД.
- Удобная работа с атрибутами:
 - можно хранить отдельно от пространственных данных;
 - можно привязывать к пространственным единицам;
 - можно изменять и удалять без изменения пространственных данных.
- Мощное средство аналитической работы с любым количеством атрибутов.
- Освобождает пользователя от всех ограничений, связанных с организацией хранения данных и спецификой аппаратуры.

Реляционная модель

- Простота представления и формирования БД.
 - Универсальность и удобство обработки данных.
 - Проблема организации работы решается индексацией записей.
 - Простота модели ввиду отсутствия специальных механизмов навигации (как в иерархической и сетевой моделях данных).
 - Некоторая ограниченность использования при сложных структурах данных – увеличение времени на извлечение данных (как следствие простоты модели).